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Abstract

The weight function in fracture mechanics is the stress intensity factor at the tip of a crack in an elastic material due

to a point load at an arbitrary location in the body containing the crack. For a piezoelectric material, this definition is

extended to include the effect of point charges and the presence of an electric displacement intensity factor at the tip of

the crack. Thus, the weight function permits the calculation of the crack tip intensity factors for an arbitrary distri-

bution of applied loads and imposed electric charges. In this paper, the weight function for calculating the stress and

electric displacement intensity factors for cracks in piezoelectric materials is formulated from Maxwell relationships

among the energy release rate, the physical displacements and the electric potential as dependent variables and the

applied loads and electric charges as independent variables. These Maxwell relationships arise as a result of an electric

enthalpy for the body that can be formulated in terms of the applied loads and imposed electric charges. An electric

enthalpy for a body containing an electrically impermeable crack can then be stated that accounts for the presence of

loads and charges for a problem that has been solved previously plus the loads and charges associated with an unsolved

problem for which the stress and electric displacement intensity factors are to be found. Differentiation of the electric

enthalpy twice with respect to the applied loads (or imposed charges) and with respect to the crack length gives rise to

Maxwell relationships for the derivative of the crack tip energy release rate with respect to the applied loads (or imposed

charges) of the unsolved problem equal to the derivative of the physical displacements (or the electric potential) of the

solved problem with respect to the crack length. The Irwin relationship for the crack tip energy release rate in terms of

the crack tip intensity factors then allows the intensity factors for the unsolved problem to be formulated, thereby giving

the desired weight function. The results are used to derive the weight function for an electrically impermeable Griffith

crack in an infinite piezoelectric body, thereby giving the stress intensity factors and the electric displacement intensity

factor due to a point load and a point charge anywhere in an infinite piezoelectric body. The use of the weight function

to compute the electric displacement factor for an electrically permeable crack is then presented. Explicit results based

on a previous analysis are given for a Griffith crack in an infinite body of PZT-5H poled orthogonally to the crack

surfaces.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Cracks; Piezoelectrics; Intensity factors; Weight function; Stress; Electric field
* Corresponding author. Tel.: +1-805-893-4583; fax: +1-805-893-8486.

E-mail address: rmcm@engineering.ucsb.edu (R. McMeeking).

0020-7683/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00366-4

mail to: rmcm@engineering.ucsb.edu


6144 R. McMeeking, A. Ricoeur / International Journal of Solids and Structures 40 (2003) 6143–6162
1. Introduction

In an isotropic linear elastic material, the weight function hIðxPi Þ is the Mode I stress intensity factor for a

unit point or line load at xPi (Bueckner, 1970; Rice, 1972). For example, in the plane crack problem depicted
in Fig. 1, the Mode I stress intensity factor is a
KI ¼ hIðxPi ÞP2 ð1Þ
where P2 is interpreted as a line load in this case. In addition, for an isotropic material there is a Mode II

stress intensity factor due to the single point load shown in Fig. 1, but we omit this term in our introductory

sketch of the weight function. Note, also, that the weight function is generally different for each shape of the
body containing a crack. The utility of the weight function is that it can be used to compute the stress

intensity factor for an arbitrary distribution of loads. For example, consider tractions T to be applied to the

body. The Mode I stress intensity factor due to the T2 component of these tractions is given by
KI ¼
Z
S
hIðxPi ÞT2ðxPi ÞdS ð2Þ
where S is the surface on which the tractions are applied and xP is now used to denote the position on the

contour S. It should be noted that the T1 component may in general contribute to KI as well.

Several methods have been given for calculating the weight function for a given problem. Bueckner

(1970) obtained the original concept of the weight function from analytic function considerations and later

extended his ideas to encompass a work-conjugate integral from which the weight function can be derived
(Bueckner, 1973). Rice (1972) showed that the weight function for Mode I problems can be calculated from

the displacement solution of any boundary value problem that has a nonzero Mode I stress intensity factor

and by extension other modes can be developed in the same manner. These results arise from Maxwell

relationships among dependent and independent variables. Consequently, differentiation of the displace-

ment solutions with respect to the crack length along with some further manipulations provides the desired

results. Other methods exist for calculating the weight function. For example, Paris and McMeeking (1975)

and Paris et al. (1976) developed a computational technique using finite elements to calculate the weight
Fig. 1. A crack in a plane body with a single line load P2.
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function directly by imposing tractions on a cut-out surface around the crack tip. Labbens et al. (1975) and

Labbens et al. (1976) produced a similar numerical technique and applied it to three-dimensional crack

problems. Parks and Kamenetzky (1979) and Vanderglas (1978) have used virtual crack extension methods

to provide other algorithms.
The weight function is of considerable utility since it provides a universal form for calculation of crack

tip intensity factors once it has been established. Thus, the intensity factors for any distribution of loads can

be calculated from an established weight function. In addition, there are special applications of the weight

function that are very useful, such as the calculation of the effect of bridging tractions on a crack surface

due to fibers or friction between grains in contact across the crack (Evans and McMeeking, 1986; Marshall

et al., 1985). Furthermore, Rice�s (1972) derivation of the weight function shows that once any crack

problem with specific loading is completely solved to give its physical displacements, the weight function

can then be formulated and the stress intensity factors for any other applied load for the body in question
can then be computed. These advantages make it highly desirable to have the weight function formulated

for a piezoelectric material using the methodology of Rice (1972). Such a formulation will extend the weight

function to encompass the effect of imposed electric charges and to allow calculation of the crack tip electric

displacement intensity factor (Suo et al., 1992).

Thus, the method of Rice (1972) will be used in this paper to formulate the weight function for a crack in

a piezoelectric material. In this case, the material is anisotropic and point forces and point charges in

general will give rise to Mode I, II and III stress intensity factors and also to an electric displacement

intensity factor. It should be noted that previously the weight function was formulated for a piezoelectric
material by Ma and Chen (2001) who used Bueckner�s (1973) work-conjugate integral and treated the case

of an interface crack between two unlike piezoelectric materials. In their work, Ma and Chen (2001)

provided generic formulae for the weight function but gave no specific results. In the current paper not only

do we provide a more transparent and useful derivation of the weight function than that of Ma and Chen

(2001) but also we present some specific results for a Griffith crack in PZT-5H to illustrate its utility.
2. Formulation of the weight function for a crack in a piezoelectric material

The derivation of the weight function will be demonstrated through the specific example of the solution

for a Griffith crack of length l in a homogeneous material subject to loadings at infinity, as shown in Fig. 2.

However, it should be noted that the weight function may be derived for any geometry containing a crack

starting with any complete solution to a boundary value problem for that geometry (Rice, 1972). Therefore,

that which is given below will provide a template for what has to be done for an arbitrary problem.

The solution to a Griffith crack subject to uniform loading at infinity, as shown in Fig. 2 and known as

‘‘Problem 1’’, involves results at infinity given by
fUg ¼

u11
u12
u13
/1

8>><>>:
9>>=>>; ð3Þ
where u1i is the displacement at infinity in the xi-direction and /1 is the electric potential at infinity.

Formally, these results are infinite, but they can be made finite by considering only the amount caused by

introduction of the crack, thereby eliminating the infinite displacements and potential of an infinite un-

cracked body loaded uniformly at infinity. The crack in this problem is a mathematical slit along the x1-axis
with boundary conditions on its surface given by



Fig. 2. A Griffith crack of length l with uniform stress R1
ij and electric displacement D1

2 applied at infinity, constituting Problem 1.
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R21

R22

R23

D2

8>><>>:
9>>=>>; ¼ 0 ð4Þ
where Rij is the stress tensor and Di is the electric displacement. Clearly the surfaces of the crack are traction

free. In addition, Eq. (4) implies that the crack is impermeable to the electric field, which is an unphysical

condition. This should not be taken to mean that we believe that the impermeable crack is a reasonable

model of reality; rather we use the impermeable crack solution as a convenience and we will address the

question of the permeable crack once we have obtained the weight function.

Obviously for a complete solution, the displacements and the potential everywhere will be known, but we

leave this concept for later. As illustrated in Fig. 2, the loading at infinity is
fR1g ¼

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>; ð5Þ
where R1
ij is the stress tensor at infinity and D1

i is the electric displacement at infinity. The intensity factors

for any homogeneous, piezoelectric material in Problem 1 are given by Suo et al. (1992).
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K1
II

K1
I

K1
III

K1
D

8>><>>:
9>>=>>; ¼

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;

ffiffiffiffiffiffiffiffiffiffi
pl=2

p
ð6Þ
where KII is the Mode II stress intensity factor, KI is the Mode I stress intensity factor, KIII is the Mode III

stress intensity factor and KD is the electric displacement intensity factor. The definition of the intensity

factors is quite conventional; on the x1-axis ahead of a right-hand crack tip such as that shown for Problem

1 (Fig. 2), the stress and the electric displacement are given in general to leading order by (Suo et al., 1992)
R21

R22

R23

D2

8>><>>:
9>>=>>; ¼

KII

KI

KIII

KD

8>><>>:
9>>=>>;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p x1 � l

2

� �q ð7Þ
Note that the superscripts 1 in Eq. (6) indicate that these intensity factors pertain to Problem 1.

A second problem is now introduced, illustrated in Fig. 3 and known as ‘‘Problem 2’’. This is the one for
which we wish to compute the stress intensity factors and the electric displacement intensity factor. It

involves the same Griffith crack of length l as used for Problem 1 and the same piezoelectric material, but

now loaded only by a line force P 2
i at position x̂xi and a collocated line of charges Q2. The crack surfaces are

taken to be free of traction and to be such that D2 is zero on them as well, meaning that this crack is

impermeable as well. As before, this does not mean that we accept that an impermeable crack is realistic,

but rather we will construct its weight function and then use it to address the question of a permeable crack.
Fig. 3. The same body with a crack as in Fig. 2 with line loads P 2
i and a line charge Q2, constituting Problem 2.
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The intensity factors due to the line load and charge of Problem 2 are given by
Fig. 4.

charge
K2
II

K2
I

K2
III

K2
D

8>><>>:
9>>=>>; ¼ ½kðx̂xi; lÞ�

P 2
1

P 2
2

P 2
3

�Q2

8>><>>:
9>>=>>; ð8Þ
where ½kðx̂xi; lÞ� is a matrix containing the weight functions that we wish to formulate. The reason for using

the negative sign in conjunction with the charge will become apparent below. The superscripts 2 in Eq. (8)

indicate, of course, that these expressions are for Problem 2.
We now construct a combined problem as illustrated in Fig. 4 by simultaneously imposing the me-

chanical and electrical loading at infinity of Problem 1 and the line load and charge of Problem 2. As a

result of the combined loads, the solution at infinity becomes
u11
u12
u13
/1

8>><>>:
9>>=>>; ¼ ½C1ðlÞ�

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;þ ½C12ðx̂xi; lÞ�

P 2
1

P 2
2

P 2
3

�Q2

8>><>>:
9>>=>>; ð9Þ
where ½C1� is the symmetric generalized compliance matrix for Problem 1 and ½C12� is the generalized cross-

compliance matrix that gives the displacements and potential due to the loadings of Problem 2 at the

location where the loads of Problem 1 are applied; i.e. at infinity. Note that the geometric dependencies of
The same body with a crack as in Figs. 2 and 3 with both stress and electric displacement at infinity and a line load and line

, constituting the Combined Problem.
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the compliance matrices are indicated. In addition, they will depend on the elastic, piezoelectric and di-

electric properties of the material, but that has not been indicated explicitly. The conjugate relationship is
u1ðx̂xiÞ
u2ðx̂xiÞ
u3ðx̂xiÞ
/ðx̂xiÞ

8>><>>:
9>>=>>; ¼ ½C12ðx̂xi; lÞ�T

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;þ ½C2ðx̂xi; lÞ�

P 2
1

P 2
2

P 2
3

�Q2

8>><>>:
9>>=>>; ð10Þ
where the left-hand side gives the displacements and potential at x̂xi, the location where the loads of Problem

2 are applied and ½C2� is the symmetric generalized compliance matrix for Problem 2. The symmetries of the

generalized compliance matrices for Problems 1 and 2 and the use of the transpose in Eq. (10) of the

generalized cross-compliance matrix from Eq. (9) is dictated by the energy considerations that give rise to

classical Maxwell relationships.
The electric enthalpy for the combined problem is then given by
w ¼ 1

2

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;

T

½C1�

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;þ

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;

T

½C12�
P 2
1

P 2
2

P 2
3

�Q2

8>><>>:
9>>=>>;þ 1

2

P 2
1

P 2
2

P 2
3

�Q2

8>><>>:
9>>=>>;

T

½C2�
P 2
1

P 2
2

P 2
3

�Q2

8>><>>:
9>>=>>; ð11Þ
For notational convenience, we introduce R1
24 ¼ D1

2 , P
2
4 ¼ �Q2, u14 ¼ /1 and u4ðx̂xiÞ ¼ /ðx̂xiÞ. It can then be

shown that
u1i ¼ ow
oR1

2i

ð12Þ
and
uiðx̂xiÞ ¼
ow
oP 2

i
ð13Þ
Furthermore, the crack tip energy release rate for propagation of the crack by extension at the right-hand

tip is
G ¼ ow
ol

ð14Þ
A second differentiation of Eqs. (13) and (14) gives the Maxwell relationships
oG
oP 2

i
¼ ouiðx̂xjÞ

ol
ð15Þ
Now we can introduce the Irwin relationship (Suo et al., 1992) for the combined problem as
G ¼

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;

ffiffiffiffiffiffiffiffiffiffi
pl=2

p0BB@ þ ½kðx̂xi; lÞ�
P 2
1

P 2
2

P 2
3

�Q2

8>><>>:
9>>=>>;
1CCA

T

½H �

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;

ffiffiffiffiffiffiffiffiffiffi
pl=2

p0BB@ þ ½kðx̂xi; lÞ�
P 2
1

P 2
2

P 2
3

�Q2

8>><>>:
9>>=>>;
1CCA ð16Þ
where ½H � is the symmetric, non-singular Irwin matrix for computing the energy release rate from the in-

tensity factors (Suo et al., 1992). Differentiation of this equation gives
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oG
oP2

1

oG
oP2

2

oG
oP2

3

oG
oP2

4

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ 2½kðx̂xi; lÞ�T½H �

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;

ffiffiffiffiffiffiffiffiffiffi
pl=2

p0BB@ þ ½kðx̂xi; lÞ�
P 2
1

P 2
2

P 2
3

P 2
4

8>><>>:
9>>=>>;
1CCA ð17Þ
Similarly, differentiation of Eq. (10) provides
ou1ðx̂xiÞ
ol

ou2ðx̂xiÞ
ol

ou3ðx̂xiÞ
ol

ou4ðx̂xiÞ
ol

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ o

ol
½C12ðx̂xi; lÞ�T

� � R1
21

R1
22

R1
23

R1
24

8>><>>:
9>>=>>;þ o

ol
½C2�

� � P 2
1

P 2
2

P 2
3

P 2
4

8>><>>:
9>>=>>; ð18Þ
Now set P 2
i to zero and use Eq. (15) to obtain
2
ffiffiffiffiffiffiffiffiffiffi
pl=2

p
½kðx̂xi; lÞ�T½H �

R1
21

R1
22

R1
23

R1
24

8>><>>:
9>>=>>; ¼ o

ol
½C12ðx̂xi; lÞ�T

� � R1
21

R1
22

R1
23

R1
24

8>><>>:
9>>=>>; ð19Þ
which is valid for arbitrary values of R1
ij . Therefore, the stress vector can be eliminated and since ½H � is non-

singular and symmetric, we obtain
½kðx̂xi; lÞ� ¼
1

2
ffiffiffiffiffiffiffiffiffiffi
pl=2

p ½H ��1 o

ol
½C12ðx̂xi; lÞ� ð20Þ
It should be noted that we chose to derive the weight function for a specific geometry (the Griffith crack)

starting from a specific loading configuration used as Problem 1 (uniform load at infinity). However, the
conceptual steps of the derivation that we used are applicable to any geometry and can be done with any

exact solution used as the source for Problem 1. Thus, as in Rice�s (1972) derivation of the weight function,

Eq. (20) shows that it is proportional to the derivative with respect to crack length of the generalized dis-

placements due to unit loading in any exact solution to a crack problem. As a consequence, the formula given

in Eq. (20) states the weight function for any planar geometry containing a through crack in a homogeneous

piezoelectric material loaded by line loads and line charges. Furthermore, the result can be extended to

3-dimensional bodies containing cracks of arbitrary shape following Parks and Kamenetzky (1979).
3. The weight function for a Griffith crack in a piezoelectric solid

The impermeable Griffith crack problem in a homogeneous piezoelectric material as shown in Fig. 2 is

solved by the expression (Suo et al., 1992).
u1ðxiÞ
u2ðxiÞ
u3ðxiÞ
/ðxiÞ

8>><>>:
9>>=>>; ¼ Rð½A�½Z�½N �Þ

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>; ð21Þ
where Rð Þ indicates the real part of the term contained in the parenthesis and ½A� and ½N � are matrices of
complex constants arising in an eigenvalue problem ensuring satisfaction of the governing equations for

any homogeneous piezoelectric material (Eshelby et al., 1953; Suo et al., 1992). These matrices are given in
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Appendix A for the material PZT-5H. The remaining matrix ½Z� in Eq. (21) is formulated following ex-

amples given by Suo et al. (1992), Park and Sun (1995), Kemmer (2000) and Kuna and Ricoeur (2002) and

is given by
½Z� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 �

l2

4

r
� z1 0 0 0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 �

l2

4

r
� z2 0 0

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z23 �

l2

4

r
� z3 0

0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 �

l2

4

r
� z4

2666666666664

3777777777775
ð22Þ
with
zi ¼ x1 þ pix2 ð23Þ
where pi are the four complex eigenvalues for the problem mentioned above. These eigenvalues are given in

Appendix A for PZT-5H. Note that the term given by Eq. (22) is the part due to the introduction of the

crack. The complete solution is obtained by adding the displacements and potential compatible with the

uniform strain arising in an infinite body subject to the uniform loading. As a consequence, the dis-

placements appearing in Eq. (21) are finite. However, these displacements are suitable for constructing the
weight function, because the additional term connected to the uniform strain is, of course, independent of

the crack size. Note that the matrices ½A� and ½N � correspond to terms that are given the equivalent symbol

in the work of Kuna and Ricoeur (2002) where more detail of the solution procedure can be found. The

same solution methodology has been used by Suo et al. (1992), Park and Sun (1995) and Kuna and Ricoeur

(2002) and variants of it are found elsewhere such as used by Kemmer (2000).

Comparison of Eq. (10) with Eq. (21) shows that, to the neglect of the displacements in the body without

a crack
½C12�T ¼ Rð½A�½Z�½N �Þ ð24Þ
Thus, from Eq. (20), we find that the weight function for the impermeable Griffith crack is
½k� ¼ �1

4
ffiffiffiffiffiffiffiffiffiffi
pl=2

p ½H ��1
Rð½A�½bZZ �½N �ÞT ð25Þ
where
½bZZ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 þ l=2
z1 � l=2

s
0 0 0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ l=2
z2 � l=2

s
0 0

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3 þ l=2
z3 � l=2

s
0

0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 þ l=2
z4 � l=2

s

2666666666666664

3777777777777775
ð26Þ
is computed from ½Z� according to Eqs. (20) and (21). For points on the crack surface, all zi are equal to x1,
so the weight function becomes
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½k� ¼ �1

4
ffiffiffiffiffiffiffiffiffiffi
pl=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=2þ x1
l=2� x1

s
½H ��1

Rði½A�½N �ÞT ð27Þ
The positive and negative signs in Eq. (27) appear because
zi �
l
2
¼ l

2

�
� x1

�
e�ip ð28Þ
on the crack surfaces with the positive sign for the upper crack surface and the negative sign on the lower

crack surface whereas
zi þ
l
2
¼ l

2
þ x1 ð29Þ
on both crack surfaces. Thus in Eq. (27), the positive sign is used on the upper crack surface and the

negative sign is used on the lower crack surface. Eq. (27) is simplified by use of (Suo et al., 1992),
½H � ¼ 1

2
Rði½A�½N �Þ ð30Þ
and since ½H � is symmetric, the weight function on the crack is
½k� ¼ �1

2
ffiffiffiffiffiffiffiffiffiffi
pl=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=2þ x1
l=2� x1

s
½I � ð31Þ
Thus the weight function on the surface of the Griffith crack is the same in all homogeneous piezoelectric

materials, the anisotropy notwithstanding. Given the result for stress intensity factors in Eq. (6), this latter

point is not surprising since uniform 3-dimensional tractions and uniform charge densities on the upper and

lower surfaces of the crack with the appropriate signs must lead to Eq. (6) when combined with Eqs. (8) and

(31) and integrated in the manner indicated in Eq. (2). Note also that Eq. (31) is consequently valid for an

isotropic material that is therefore without piezoelectricity and thus where the dielectricity decouples from

the elasticity.

Now return to the general result in Eq. (25) and consider the asymptotic form very close to the right-
hand crack tip. In the polar coordinate system based on the right-hand crack tip and shown in Fig. 1, the

variable zi is replaced by
zi ¼
l
2
þ rðcos hþ pi sin hÞ ð32Þ
Then in the limit r ! 0, the weight function becomes
½k� ¼ �1ffiffiffiffiffiffiffi
8pr

p ½H ��1
Rð½A�½eZZ �½N �ÞT ð33Þ
where
½eZZ � ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ p1 sin h
p 0 0 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ p2 sin h
p 0 0

0 0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ p3 sin h
p 0

0 0 0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ p4 sin h
p

266666666664

377777777775
ð34Þ
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A similar treatment of Eq. (31) gives the near tip weight function for the right-hand crack tip on the crack

surface to be
Fig. 5.

applied
½k� ¼ �1ffiffiffiffiffiffiffi
2pr

p ½I � ð35Þ
Note that the Irwin matrix ½H � is given in Appendix A for PZT-5H.
4. Results

The use and character of the weight function for a piezoelectric will now be demonstrated through

results from examples. First, we will use the expression in Eq. (31), which is valid for any material. Consider
the problem illustrated in Fig. 5 in which there are mechanical loads and charges applied at infinity and

mechanical loads and charges imposed on the crack surface. The loads and charges at infinity are in

equilibrium with uniform stress and electric displacement. The tractions and charges on the lower crack

surface are the negative of the tractions applied on the upper surface and thus
T1ðx1Þ
T2ðx1Þ
T3ðx1Þ
qðx1Þ

8>><>>:
9>>=>>;

�

¼ �

T1ðx1Þ
T2ðx1Þ
T3ðx1Þ
qðx1Þ

8>><>>:
9>>=>>;

þ

ð36Þ
A Griffith crack of length l with uniform stress and electric displacement at infinity plus tractions Tiðx1Þ and charges qðx1Þ
to the crack surfaces.
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where Ti is the traction applied to the crack surface, q is the charge per unit area attached to the crack

surface and the superscript positive and negative signs denote the upper and lower crack surfaces, re-

spectively.

In the absence of the crack, the stress and electric displacement everywhere have the values
R21

R22

R23

D2

8>><>>:
9>>=>>; ¼

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>; ð37Þ
As a consequence, the problem shown in Fig. 5 can be replaced by the solution given by Eq. (37) plus the

solution to a problem with zero loads and charges at infinity and the tractions and charges
T1ðx1Þ
T2ðx1Þ
T3ðx1Þ
qðx1Þ

8>><>>:
9>>=>>;

þ

þ

R1
21

R1
22

R1
23

�D1
2

8>><>>:
9>>=>>; ð38Þ
applied to the upper crack surface with the negative of these applied to the lower surface. It follows from

Eqs. (8) and (31) that the intensity factors for the problem depicted in Fig. 5 are given by
KII

KI

KIII

KD

8>><>>:
9>>=>>; ¼ 1ffiffiffiffiffiffiffiffiffiffi

pl=2
p Z l=2

�l=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=2þ x1
l=2� x1

s T1ðx1Þ
T2ðx1Þ
T3ðx1Þ
�qðx1Þ

8>><>>:
9>>=>>;

þ0BB@ þ

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;
1CCAdx1 ð39Þ
where the equivalence between Tidx1 and a line load and between qdx1 and a line charge has been used and

integration performed to collect all the contributions from the upper and lower crack surfaces. The con-

tribution from the loads and charges at infinity integrates readily and we obtain
KII

KI

KIII

KD

8>><>>:
9>>=>>; ¼

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;

ffiffiffiffiffiffiffiffiffiffi
pl=2

p
þ 1ffiffiffiffiffiffiffiffiffiffi

pl=2
p Z l=2

�l=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=2þ x1
l=2� x1

s T1ðx1Þ
T2ðx1Þ
T3ðx1Þ
�qðx1Þ

8>><>>:
9>>=>>;

þ

dx1 ð40Þ
For the second example, we will consider PZT-5H poled in the x2-direction. The material constants for this

case are given in Appendix A. The relevant eigenvalue problem (Suo et al., 1992; Park and Sun, 1995; Kuna

and Ricoeur, 2002) for this case has been solved and, as noted above, the eigenvalues pi and the associated

matrices ½H �, ½A� and ½N � given also in Appendix A. These results can be combined with the general case Eq.

(25) to explore the effect of a line load and a line charge placed at arbitrary locations relative to the crack
tip. However, it is more instructive to investigate the near-tip behavior and thus use Eq. (33), which is valid

for any crack in any geometry. The results for a line load of magnitude 1 N/m acting in the x2-direction and

a line of charges of magnitude 1 C/m both at an angle h relative to the crack tip in the polar coordinate

system of Fig. 1 have been computed numerically from Eq. (33) subject to the values given in Appendix A

and the matrix in Eq. (34). The results for the line load are plotted in Fig. 6 and those for the line of charges

in Fig. 7. Note that in contrast to the behavior when the tractions and charges are placed on the crack

surface, the results in Fig. 6 show that a line force near the tip acting in the x2-direction but not placed on

the crack surface will produce non-zero intensity factor for all modes except III. Similarly, the results in Fig.
7 show that a line of charges placed near the crack tip but not on the crack surface will produce non-zero

intensity factors for the stress Modes I and II as well as an electric displacement intensity factor.



Fig. 7. Intensity factors for the crack tip in PZT-5H due to a near-tip line charge Q equal to 1 C/m at an angle h to the crack tip and at

distance r ¼ 1 mm from the crack tip. In this example, the crack is impermeable.

Fig. 6. Intensity factors for the crack tip in PZT-5H due to a near-tip line load P2 equal to 1 N/m at an angle h to the crack tip and at

distance r ¼ 1 mm from the crack tip. In this example, the crack is impermeable.
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5. The permeable crack

So far, the results we have obtained have all been focused on the impermeable crack for which the

surface conditions are given by Eq. (4). As we have made clear, we do not accept this condition as physi-
cally realistic, but rather we have been using it as a convenience for the purposes of constructing our results.

To deal with the permeable crack, we first observe that a generalization of the problem of a crack in

an infinite body can be stated so that the interior of the crack sustains stresses and electric displacements

given by
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fR�g ¼

R�
21ðx1Þ

R�
22ðx1Þ

R�
23ðx1Þ

D�
2ðx1Þ

8>><>>:
9>>=>>; ð41Þ
where the superscript asterisk denotes the values within the crack. The stresses in the crack could be

sustained by material inserted into it; e.g. a compliant rubber may be present in the crack or there may be
bridging fibers or grains (Evans and McMeeking, 1986). We consider the case where the material trans-

mitting the stress is non-conducting and therefore is a dielectric. Thus, the inserted material or the bridging

fibers or grains are capable of sustaining an electric displacement. However, even when no solid material or

bridging links are present within the crack, the interior is still capable of sustaining an electric displacement

or equivalently an electric field. A case in point is an atmospheric gas or a non-conducting fluid, both of

which will at least be weakly polarizable. In addition, the case of a vacuum within a crack pulled open by

electromechanical or mechanical loads fits into our general picture. Although not polarizable, the vacuum

within the space in the crack sustains an effective field j0E2, where j0 is the permittivity of free space. This
field is the equivalent of an electric displacement and its continuity between the crack interior and the

adjacent material will require in general that the electric field inside the crack is non-zero.

When these situations generating stress or electric displacement prevail within the crack in conjunction

with no tractions or charges attached to the crack surfaces, continuity requires that the stress and electric

displacement in the material immediately adjacent to the crack surfaces are given by Eq. (41). However, this

condition of stress and electric displacement in the material adjacent to the crack surfaces can be produced

simultaneously with zero stress and electric displacement within the crack by applying tractions and electric

charge densities on the top surface of the crack given by
fT �g ¼

�R�
21ðx1Þ

�R�
22ðx1Þ

�R�
23ðx1Þ

D�
2ðx1Þ

8>><>>:
9>>=>>; ð42Þ
while the negative of these are applied on the bottom crack surface. Therefore, the intensity factors for a

permeable crack (that may also transmit mechanical loads) can be computed from the weight function for

an impermeable crack by using the expression in Eq. (42) as the tractions and charge densities in Eq. (40)

being applied to the top surface of the crack. Thus the intensity factors for a permeable crack (and one that

may also transmit bridging tractions) are given by
KII

KI

KIII

KD

8>><>>:
9>>=>>; ¼

R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>;

ffiffiffiffiffiffiffiffiffiffi
pl=2

p
� 1ffiffiffiffiffiffiffiffiffiffi

pl=2
p Z l=2

�l=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=2þ x1
l=2� x1

s R�
21ðx1Þ

R�
22ðx1Þ

R�
23ðx1Þ

D�
2ðx1Þ

8>><>>:
9>>=>>;dx1 ð43Þ
This result is equivalent to those commonly used in the analysis of bridged cracks (Evans and McMeeking,
1986), but now the effect of electric fields has been included.

The difficulty remains that the electric displacement (and the bridging tractions) within the crack must

somehow be computed. In general, this will require the solution of a boundary value problem that includes

the imposition of the appropriate boundary conditions on the surfaces of the crack (Hao and Shen, 1994;

McMeeking, 1999; Kemmer, 2000; Haug and McMeeking, 2000; McMeeking, 2001). Obtaining such a

solution is not always a trivial step and when there is some complex electrical interaction across the crack

(such as through contacting asperities), the analysis may be difficult and require numerical analysis.

However, there are two simple cases that we can address. One is where the crack in a frictionless material is
subject to sufficient compression so that its bottom and top surfaces are everywhere in intimate contact with
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each other. In that situation, the crack surface boundary conditions in terms of stress are that R21 and R23

are zero and R22 and D2 are continuous across the crack and uniform along its length. This last assertion

will be confirmed below. In addition, the displacement in the x2-direction and the potential must be con-

tinuous across the crack. Since the stress and electric displacement inside the crack are all uniform, the
displacement and potential differences across the crack are given by
Du1ðxiÞ
Du2ðxiÞ
Du3ðxiÞ
D/ðxiÞ

8>><>>:
9>>=>>; ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4
� x21

r
½H �

R1
21 � R�

21

R1
22 � R�

22

R1
23 � R�

23

D1
2 � D�

2

8>><>>:
9>>=>>; ð44Þ
Given that R�
21 and R�

23 are zero, the requirement that Du2 and D/ across the crack are zero provides
R�
22

D�
2

� �
¼ 1

H22H44 � H 2
24

H44 �H24

�H24 H22

� 	
H21 H22 H23 H24

H41 H42 H43 H44

� 	 R1
21

R1
22

R1
23

D1
2

8>><>>:
9>>=>>; ð45Þ
which confirms that the normal stress on the crack and the electric displacement in the crack are uniform.

As a result of the above development, the intensity factors from Eq. (43) become
KII

KI

KIII

KD

8>><>>:
9>>=>>; ¼ 1

H22H44 � H 2
24

H22H44 � H 2
24 0

H24H41 � H21H44 H24H43 � H23H44

0 H22H44 � H 2
24

H24H21 � H22H41 H24H23 � H22H43

2664
3775 R1

21

R1
23

� � ffiffiffiffiffiffiffiffiffiffi
pl=2

p
ð46Þ
where it can be seen that the applied shear stresses control the intensity factors. The Modes I and D in-

tensity factors are non-zero only so that the displacement u2 and the potential / are continuous across that
crack. Inspection of ½H � for PZT-5H poled in the x2-direction as given in Appendix A indicates that both KI

and KD are zero in that case.

The other simple case is when there is no mechanical connection across the crack and therefore all

components of stress inside the flaw are zero. This implies that the loading in the problem is such that the

crack surfaces are separated. In this case, it can be shown that the shape of the open crack is elliptical and

the electric displacement inside the crack is uniform (Hao and Shen, 1994; Kemmer, 2000). This field

uniformity can be understood with reference to the depolarization fields found within elliptical cavities in

classical electrostatics (Jackson, 1962), extended to elasticity problems for elliptical cavities and inclusions
by Eshelby (1957) and therefore valid for piezoelectric materials. Consequently, the intensity factors from

Eq. (43) become
KII

KI

KIII

KD

8>><>>:
9>>=>>; ¼

R1
21

R1
22

R1
23

D1
2 � D�

2

8>><>>:
9>>=>>;

ffiffiffiffiffiffiffiffiffiffi
pl=2

p
ð47Þ
where D�
2 is the uniform electric displacement within the crack. This latter term may be calculated from the

observation that the boundary value problem is solved by Eq. (21) with D1
2 in that expression replaced by

D1
2 � D�

2. Of course, the result in Eq. (47) solves the problem of a crack in which the conditions adjacent to

the crack surfaces are given by
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R21

R22

R23

D2

8>><>>:
9>>=>>; ¼ �

R1
21

R1
22

R1
23

D1
2 � D�

2

8>><>>:
9>>=>>; ð48Þ
and zero loads and electrical fields at infinity. To this must be added the solution with uniform stress and

electric displacement for the infinite body without a crack. In this case, the difference across the crack

surface in the resulting solution is given by Eq. (44) to be
Du1ðxiÞ
Du2ðxiÞ
Du3ðxiÞ
D/ðxiÞ

8>><>>:
9>>=>>; ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4
� x21

r
½H �

R1
21

R1
22

R1
23

D1
2 � D�

2

8>><>>:
9>>=>>; ð49Þ
and therefore, the field in the x2-direction everywhere in the crack interior is (Kemmer, 2000).
E�
2 ¼ �H4iR

1
2i þ H44ðD1

2 � D�
2Þ

H2iR
1
2i þ H24ðD1

2 � D�
2Þ

ð50Þ
where Einstein repeated index summation convention is used in the range 1–3. Hao and Shen (1994) use
essentially the same formulation as is stated in Eq. (50), but present it as a local relationship at x1 for the
capacitance of the space within the crack as a function of the crack opening. Kemmer (2000), however,

recognizes that the field within the Griffith crack is uniform and thus is able to deduce Eq. (50).

Now let the interior of the crack have permittivity j0, which, as before, can be assumed to be the value

for free space since most gases are not greatly polarizable. Thus the electric displacement in the crack is

given by j0E�
2 and for anisotropic materials, the quadratic equation arising from Eq. (50) leads to the

result
D�
2 ¼

1

2H24

H2iR
1
2i

�
þ H24D1

2 � j0H44 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj0H44 � H2iR

1
2i � H24D1

2 Þ
2 þ 4j0H24ðH4iR

1
2i þ H44D1

2 Þ
q 	

ð51Þ
where the other solution has been dispensed with on the grounds given by Kemmer (2000) that it involves a

negative crack opening displacement. Hao and Shen (1994) provide a numerical result equivalent to Eq.

(51). The expression in Eq. (51) is invalid for isotropic materials where ½H � is diagonal. For the isotropic
case, Eq. (51) is replaced by
D�
2 ¼

D1
2

1þ 2ð1� m2ÞjR1
22

j0Y

ð52Þ
where m is Poisson�s ratio, j is the dielectric permittivity of the material and Y is Young�s modulus. Note
that in Eq. (52), the isotropic results H22 ¼ ð1� m2Þ=Y and H44 ¼ �1=2j have been used.

The expression in Eq. (51) for anisotropic materials and that in Eq. (52) for isotropic materials can be

inserted into Eq. (47) to give the intensity factors in terms of the mechanical and electrical loading at in-

finity. The result is a rather complex formula. A limiting case may be studied to yield some insight. When

the applied mechanical and electrical loads are uniformly small, Eq. (51) linearizes to give
D�
2 ¼

1

H44

½H4iR
1
2i þ H44D1

2 � ð53Þ
which is valid also as a linearization of Eq. (52) for the isotropic case since H4i are all zero in that case. The

general linearized result for the electric displacement intensity factor from Eq. (47) is then
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KD ¼ �H4iR2i

H44

ffiffiffiffiffiffiffiffiffiffi
pl=2

p
ð54Þ
It should be noted that H44 is negative, so that for tensile stress, the result for KD will be positive. Note

that Eq. (54) is valid for the isotropic case but indicates that KD is zero in this situation. (N.B. The

latter result arises because the off-diagonal terms in the Irwin matrix are zero when the material is iso-
tropic and the Einstein summation implied in Eq. (54) ranges over the subscripts from 1 to only 3.) The

linearized result in Eq. (54) in general is in fact the solution for KD when the crack opening is zero.

It enforces the condition that there should be no potential difference across the crack in that situation

since the crack surfaces are in contact with each other. This can be confirmed by comparing Eq. (53)

with Eq. (49) with D/ set to zero. Such a situation is appropriate to first order for a crack with a very

small crack opening as arises in the linearized case with small applied mechanical and electrical loads.

Thus, the linearized version of this example is a special case of the previous situation that was illustrated

where the crack surfaces are closed due to compression and the normal stress across the crack is non-
zero.
6. Closure

The weight function for a Griffith crack in a piezoelectric material has been derived. The weight function

provides a means of calculating the intensity factors for the crack when arbitrary loads and electrical
charges are imposed, given that the loads and charges have an equilibrium distribution. The method for

deriving the weight function has been given for the Griffith crack for clarity. However, the procedure

presented can be used for a crack of any shape in any body, finite or infinite. Therefore, in principle, we

have derived the weight function for all piezoelectric specimens.

Note that strictly, we have derived the weight function for a crack that is impermeable to the electric

field. However, judicious use of the weight function with charge distributions on the crack surface allows us

to obtain the intensity factors for a body containing a permeable crack. In this way, we can overcome the

limitation that would otherwise confine the weight function to applications involving the non-physical
example of an impermeable crack.
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Appendix A

Here we give the material constants, the eigenvalues pi, the Irwin matrix ½H � and the matrices ½A� and ½N �
for PZT-5H with the positive x2-axis as the poling direction.



6160 R. McMeeking, A. Ricoeur / International Journal of Solids and Structures 40 (2003) 6143–6162
The constitutive matrices can be written in Voigt form for the global coordinate system such that
R11

R22

R33

R23

R13

R12

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

c11 c13 c12 0 0 0

c13 c33 c13 0 0 0

c12 c13 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0
c11 � c12

2
0

0 0 0 0 0 c44

26666664

37777775
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e22
e33
2e23
2e13
2e12

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
�

0 e31 0

0 e33 0

0 e31 0
0 0 e15
0 0 0

e15 0 0

26666664
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E1

E2

E3

8<:
9=; ðA:1Þ

D1

D2

D3

8<:
9=; ¼

0 0 0 0 0 e15
e31 e33 e31 0 0 0

0 0 0 e15 0 0

24 35
e11
e22
e33
2e23
2e13
2e12

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ

j11 0 0

0 j33 0

0 0 j11

24 35 E1

E2

E3

8<:
9=; ðA:2Þ
where cij are elastic moduli, eij are strain components, eij are piezoelectric coefficients, Ei are electric field

components and jij are dielectric permittivities. Specific values for PZT-5H are
c11 ¼ 12:6� 1010 Pa; c12 ¼ 5:5� 1010 Pa; c13 ¼ 5:3� 1010 Pa;

c33 ¼ 11:7� 1010 Pa; c44 ¼ 3:53� 1010 Pa

e31 ¼ �6:5� 109 N=ðGVmÞ; e33 ¼ 23:3� 109 N=ðGVmÞ; e15 ¼ 17:0� 109 N=ðGVmÞ
j11 ¼ 15:1� 109 N=ðGVÞ2; j33 ¼ 13:0� 109 N=ðGVÞ2

ðA:3Þ
The eigenvalues obtained for solving the plane problem in x1–x2 space in PZT-5H with the poling di-
rection being x2 are
p1 ¼ �0:193165þ 1:037274i

p2 ¼ 0:193165þ 1:037274i

p3 ¼ 1:071040i

p4 ¼ 1:002829i

ðA:4Þ
It should be noted that the eigenvalues come in conjugate pairs. However, only the eigenvalues having

positive imaginary part have been given above.

The columns of the matrix ½A� represent eigenvectors corresponding to the four eigenvalues given in Eq.

(A.4). For the case studied, this matrix is
½A� ¼

0:259185þ 1:434640i �0:259185þ 1:434640i �0:395612i 0
�1:109441þ 0:703125i �1:109441� 0:703125i 0:476599 0

0 0 0 1

�1 �1 �1 0

2664
3775 ðA:5Þ
where the units used to compute this matrix are: force N; length m; electrical potential GV. Thus, using

these matrices, stress is computed in Pa, electric field in GV/m, electric displacement in nC/m2, stress in-

tensity factors in Pa
ffiffiffiffi
m

p
, electric displacement factors in nC/m3=2 and energy release rates in J/m2.

It should be noted that the eigenvectors embedded as columns in the matrix ½A� satisfy the orthogonality

conditions of Ting (1986) (i.e. his Eq. (3.10)). However, we have not taken the additional optional step of

normalizing the eigenvectors according to Ting�s (1986) Eq. (3.11). Therefore, our results do not satisfy the
orthogonality conditions given as his Eq. (3.15) by Ting (1986) nor the closure relationships in Ting�s (1986)
Eq. (3.17). However, the failure to satisfy these conditions through our choice not to normalize the
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eigenvectors is not a deficiency of our results and any effect is compensated by the values presented for the

matrix ½N � given below. This is obvious once it is noted that in all of our results Eqs. (21)–(27), the effect of

½A� and ½N � always appears in terms of their product.

Given the value for ½A� above, the matrix ½N � is then
½N � ¼

�0:088609þ0:223461i �0:251752�0:041766i 0 0:006037�0:025832i
�0:088609�0:223461i 0:251752�0:041766i 0 �0:006037�0:025832i

0:093798 0:211285i 0 �0:406129i
0 0 �0:282487i 0

2664
3775�10�10

ðA:6Þ
and the Irwin matrix is given uniquely by
½H � ¼

0:877585 0 0 0

0 0:803275 0 0:638765
0 0 1:412435 0

0 0:638765 0 �2:288973

2664
3775� 10�11 ðA:7Þ
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